Blaze(六):Pandas与Blaze比较

导入和构造

# coding: utf-8

import numpy as np
import pandas as pd
from blaze import data, by

df = pd.DataFrame({'name': ['Alice', 'Bob', 'Joe', 'Bob'],
                   'amount': [100, 200, 300, 400],
                   'id': [1, 2, 3, 4],
                   })

df = data(df)
print(df.peek())

输出:

    name  amount  id
0  Alice     100   1
1    Bob     200   2
2    Joe     300   3
3    Bob     400   4
Computaion Pandas Blaze
Column Arithmetic df.amount * 2 df.amount * 2
Multiple Columns df[[‘id’, ‘amount’]] df[[‘id’, ‘amount’]]
Selection df[df.amount > 300] df[df.amount > 300]
Group By df.groupby(‘name’).amount.mean() df.groupby([‘name’,’id’]).amount.mean() by(df.name, amount=df.amount.mean()) by(merge(df.name, df.id), amount=df.amount.mean())
Join pd.merge(df, df2, on=’name’) join(df, df2, ‘name’)
Map df.amount.map(lambda x: x + 1) df.amount.map(lambda x: x + 1, ‘int64’)
Relabel Columns df.rename(columns={‘name’: ‘alias’, ‘amount’: ‘dollars’}) df.relabel(name=’alias’, amount=’dollars’)
Drop duplicates df.drop_duplicates() df.name.drop_duplicates() df.distinct() df.name.distinct()
Reductions df.amount.mean() df.amount.value_counts() df.amount.mean() df.amount.count_values()
Concatenate pd.concat((df, df)) concat(df, df)
Column Type Information df.dtypes df.amount.dtype df.dshape df.amount.dshape

Blaze可以简化一些常见的IO任务,并使其更具可读性,这些任务是希望使用pandas处理的。这些例子使用的是odo库。许多情况下,blaze可以处理超出内存大小的数据集,而这是pandas不能够容易处理的事情。

from odo import odo
Operations Pandas Blaze
Load directory of CSV files df = pd.concat([pd.read_csv(filename) for filename in glob.glob(‘path/to/*.csv’)]) df = data(‘path/to/*.csv’)
Save result to CSV file df[df.amount < 0].to_csv(‘output.csv’) odo(df[df.amount < 0], ‘output.csv’)
Read from SQL database df = pd.read_sql(‘select * from t’, con=’sqlite:///db.db’) df = pd.read_sql(‘select * from t’, con=sa.create_engine(‘sqlite:///db.db’)) df = data(‘sqlite://db.db::t’)

上一篇
Blaze(七):URI strings Blaze(七):URI strings
Blaze使用strings指定数据源,使用时非常简单。 1. 例子与一组CSV文件或一个SQL数据库交互 # coding: utf-8 from blaze import * from blaze.utils import examp
2018-12-05
下一篇
Blaze(五):数据的分割-应用-组合-分组 Blaze(五):数据的分割-应用-组合-分组
分组操作将一张表切分为多个块,并对每个块进行操作。 以species分组,并对petal求平均值 # coding: utf-8 from blaze import data, by from blaze.utils import exa
2018-12-05
目录